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Overarching RAJA goal: enable portability with small
disruption to application programming style

Balance Performance:

= Augment compiler’s ability to optimize C++ code

— Allow work-arounds when performance is not what’s expected

= Simplify expression of various forms of fine-grained (on-node) parallelism

And Productivity:

= Single-source kernels

— Do not bind an application to a particular PM technology

— Best choice for a given platform or algorithm may not be clear
= Clear separation of responsibilities

— RAJA: Encapsulate hardware and PM details and execute loops
— App: Select iteration patterns and execution policies with RAJA API

|deal: Developers add parallelism to code using RAJA encapsulation layer —

preserve development dynamics and advantages of MPI heritage
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RAJA is a low-risk way to realize latent fine-grain
parallelism in existing applications

= Loop iteration and loop body are decoupled (body mostly unchanged, often untouched)
= A loop iteration is a “task” — reorder, schedule, aggregate, manage dependencies, etc.

= Explore implementation alternatives (tuning) without disrupting application source code

C-style for-loop RAJA-style loop

double* x ; double* y ;

double a ;

RAJA: : SumReduction<reduce policy, double>|tsum(0) ;
RAJA: :MinReduction<reduce policy, double>|tmin (MYMAX) ;

double* x ; double* y ;
double a, tsum = 0, tmin = MYMAX; ‘

for ( int i = begin; i < end; ++i ) {
y[i]l += a * x[i] ;
tsum += y[i] ;
if ( y[i] < tmin ) tmin = y[i];

|RAJA::forall< exec policy >|(|IndexSet |, [=] (int i) ({
y[i]l += a * x[i] ;
tsum += y[i];
tmin.min( y[i] )~

} o)

= RAJA encapsulation features
— Traversals & execution policies (loop scheduling, execution, PM backends)

— IndexSets (iteration space partition, ordering, dependencies, data placement, etc.)
— Reduction types (programming model portability)
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RAJA enables systematic architecture portability
and tuning for large production codes

= Design based on loop / mesh traversal patterns in LLNL ASC codes
— A loop is the main conceptual abstraction in RAJA
— A typical LLNL multi-physics code has O(10K) loops, but O(10) loop patterns
— App teams typically wrap RAJA in a “mini-DSL” that matches their style

= RAJA can be used selectively and adopted incrementally
— Mapping loops to RAJA “execution policies” is key to performance
— Important considerations: data motion, compute intensity, branch intensity,
available parallelism, etc.

= Typical RAJA integration process:

2) Tune exec policies m

* |dentify loop classes
* Map classes to
architecture features

1) Achieve basic portability 3) Explore tuning options

* Make code thread-
safe where needed

» Convert loops to

» Change iteration
pattern (IndexSets)?

* Redesign algorithm

RAJA-style using RAJA traversal or data layout?
templates and + Code-specific RAJA
execution policies constructs?

/ / /
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RAJA core abstractions can combined with
application-specific implementations

Original app code

// Kernel 1
for (int i=begin; i<end; ++i) {
Loop body 1 (stride-1)

}

// Kernel 2

for (int i=0; i<len; ++i) {
Loop body 2 (indirection)

}

// Kernel 3

// Kernel 4

Para-
meterized
RAJA

loops

—

Customized RAJA

Architecture- Kernel 4 - Arch A
tailored
implementations Kernel 4 - Arch B

“RAJA-fied” app code

// Kernel 1 : “stream” 2 low FLOP/bandwidth

RAJA: : forall<stream> ( begin, end, [=] (int i) ({
Loop body 1

} )

// ..
// Kernel 2 : “work” > high FLOP/bandwidth
RAJA: :forall<work> ( iset, [=] (int i) {

Loop body 2 (iset = index “ranges” & “lists”)

} )

Execution policies (app defined)
Arch A : stream =
Arch B : stream =

seq, work = omp

gpu

omp, work =

// Kernel 3 : RAJA IndexSet w/ custom traversal
app: : forall<app policy> ( iset, [=] (..) {

Loop body 3
} )

RAJA supports relatively simple parameterization of most loops.

Others may need customization or more severe disruption for desired performance.
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RAJA IndexSets simplify thread-safe refactoring

of code with data races

forall< colorset >(elemSet, [=] (int elem) {
// Get element node 1ids
int p@ = elemToNodeMap[elem][Q];
int pl = elemToNodeMap[elem][1];
int p2 = elemToNodeMap[elem][2];
int p3 = elemToNodeMap[elem][3];

// Accumulate volume to nodes
double volFrac = elemVol[elem]/4.0 ;
nodeVol[p@] += volFrac ;

nodeVol[pl] += volFrac ;

nodeVol[p2] += volFrac ;

nodeVol[p3] += volFrac ;

})s

p0 p1

Example code: accumulate element
volumes to mesh nodes

Ilterations are colored into sets of
independent work (IndexSet Segments)

— Iterate over segments sequentially
— Execute each segment in parallel

Without reordering, requires either:

— Contention-heavy fine-grained sync ops
(atomics / critical sections)

— Temporary arrays for accumulating sums

RAJA reordering allows use of coarse-

grained synchronization
— Less memory contention
— Code remains as domain expert wrote it
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RAJA IndexSets and traversals also enable
developers to define & schedule dependencies

#pragma omp parallel for schedule(static,1)

for (int i = 0; i < is->num seg; ++i) { :

IndexSetSegInfo* seg_info = iset.getSegmentInfo(i); VVaﬂfbr

DepGraphNode* task = seg info->getDepGraphNode () ; dependenmes to be

while (task->semaphoreValue() != 0) { satisfied
sched yield() ;

}

execute<SEG_EXEC POLICY>(seg_info, loop body) ; Execute Segment

if ( task->semaphoreReloadVaue() != 0 ) {
task->semaphoreValue () = task->semaphoreReloadValue() ;

}

if ( task->numDepTasks() != 0 ) { Resgt deper_]dency
for (int j = 0; j < task->numumDepTasks; ++3j) { information

int seg = task->depTaskNum(j) ;
DepGraphNode* dep = iset.getSegmentInfo (seg)->getDepGraphNode () ;
__sync_fetch and sub (& (dep->semaphoreValue()), 1);

Segment scheduling control logic like this is hidden in a

} RAJA traversal template.
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RAJA version of LULESH v1.0 hydro proxy app is
an interesting case study

LULESH 1.0, 45x45x45 mesh

Runtime in seconds

Base OpenMP

30 implementation is
memory intensive | Add pools for temp
25 RAJA OpenMP uses ~ armays. iPU'GF;.lIJ
20 coarse-grained switch in header file.
, synchronization /\
15 /
10 ¥
5 -
° RAJA-MEM RAJA-MEM
Base-OMP-16 RAJA-OMP-16 OMP-16 GPU-HALF-KS0
W Seriesl 28.47 13.64 8.1 11.7

‘ Lawrence Livermore National Laboratory

LLNL-PRES--688821

NYSE s

National Nuclear Security Administration



RAJA K80 GPU performance for LULESH v2.0 has
improved markedly since FY15 ASC milestone
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We are developing extensions and complements
to RAJA that address other application needs

= Abstractions to automatically move data between DRAM and HBM
or device memory — less code “clutter” than OpenMP 4 or CUDA:

4 ManagedArray A ResourceManager RAJAprovides | n,yid Poliakoff
objects know object knows contextto know | . tomorrow
what whether where
 datatocopy to copy data to copy data J

= forallN extensions for nested loops:
— Supports loop interchange and data layout changes Adam Kunen

— Provides loop index types to ensure code is correct talk tomorrow

LLNL developers are assessing these concepts in production applications today.
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RAJA enables a single source code base to run
with multiple forms of parallelism

= CPU-GPU portability achieved with existing PMs and standard C++11
— Often does not require much code restructuring (incl. reductions) or multiple versions

= RAJA can help make tuning more systematic
— Focus on loop patterns, not individual loops

= |[ndexSets provide a lot of flexibility

— Code specializations generated (and optimized) at compile-time. Execution paths through
specializations selected at runtime.

— Dependencies between iteration subsets (Segments) can be defined to ensure correctness

= Multiple LLNL projects contribute to RAJA: Ares, ALE3D, Ardra, AAPS, etc.

— See David Beckingsale policy tuning talk tomorrow

= Three LLNL production apps are integrating RAJA to prepare for Trinity and Sierra :
Ares, ALE3D, Ardra

= QOther codes are exploring RAJA : NIF VBL, hypre, Vislt, hydra, MARBL

— See Matt Martineau proxy-app talk tomorrow

An open-source RAJA release with example codes is imminent and will be available at

http://github.com/LLNL/RAJA -- collaborators welcome!
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Software engineering alone is not enough — we
need to work closely with vendors too

= Compiler vendors & PM developers have been improving support for C++ based
encapsulation

— IBM, NVIDIA, Intel, GNU, AMD (Sierra CoE, DesignForward, FastForward, van trips...)
— OpenMP 4.0 2 OpenMP 4.5 & beyond (See Arpith Jacob talk next)

Tool support for C++ templates : HPCToolkit, Intel

Try things
= We (DOE HPC community) must and identify
tell vendors what we need issues

Build test

cases

= (Good solutions involve
negotiations (our needs, vendor

priorities, language standards, Evaluate Work with
vendor extensions, etc.) vendor vendors on

Co-design

solutions solutions

A relatively small investment in compilers and runtimes (and vigilance) — compared to

HW costs — can have a huge, positive, lasting impact on our codes. Issues we identify
and work to resolve also benefit the broader HPC community.
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